Location-specific integrated farming system models for resource recycling and livelihood security for smallholders

Author:

Kumar Sanjeev,Shivani ,Dey Amitav,Kumar Ujjwal,Kumar Rakesh,Mondal Surajit,Kumar Ajay,Manibhushan

Abstract

The present investigation was carried out in a holistic mode to study the interactions among the integrated farming system (IFS) components and to develop and design a sustainable IFS model which is technologically sound, economically viable, environmentally benign, and socially acceptable for the middle Indo-Gangetic Plains. For efficient utilization of farm resources and to enhance the income per unit area of land, 10 IFS models have been developed at the farmers’ fields of Patna, Nalanda, and Vaishali districts of Bihar, India, during 2016–2021, involving components like crops, poultry, cattle, goat, mushroom farming, fishery, and duckery in different combinations. Out of 10 different integrations, three primary cropping systems prevailing in the state were undertaken and seven other components were integrated in a synergistic mode. Each system was allocated an area of 0.8 ha (2,000 m²), viz., (i) rice–wheat, (ii) rice–maize, (iii) rice–maize–moong (crop), (iv) crop + vegetable + goat, (v) crop + fish + goat, (vi) crop + fish + cattle, (vii) crop + fish + duck + goat, (viii) crop + fish + duck, (ix) crop + fish + mushroom, and (x) crop + fish + poultry. To sustain the productivity of soil health, inorganic fertilizers combined with organic wastes, obtained from various components of IFS, viz., recycled pond silts, poultry manure, duck manure, goat manure and cow dung as farmyard manures (FYMs), composted residues, and vermicompost were applied to crops grown under different IFS models. The nutrient content of manure increased manifolds after recycling as compost and vermicompost. Residue recycling revealed that integration of crops with fish and duck resulted in higher fish productivity and higher net returns (increased by USD13) in comparison to poultry dropping fed fishes. Due to the recycling of droppings, viz., poultry, duck, goat, cattle, and plant wastes, an additional quantity of 56.5 kg N, 39.6 kg P2O5, and 42.7 kg K2O was added to the soil during the study. Crop integrated with fish + duck + goat had the maximum rice grain equivalent yield (RGEY), net returns, and employment opportunity (467 man-days/year) from 0.8 ha of land, followed by crop + fish + poultry integration. The sustainability index (0.77) and net energy gain (95,770 MJ) were also found highest with crop + fish + duck+ goat integration indicating the optimum efficiency of all the farming system integrations for the region.

Publisher

Frontiers Media SA

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

Reference42 articles.

1. Integrated irrigated crop-livestock systems in dry climates;Allen;Agron. J.,2007

2. Comparative study on conventional and improved integrated farming systems for sustainable production, income generation and employment opportunity among the tribal farmers in hilly regions of manipur;Ansari;Indian J. Agric. Sci.,2013

3. Loss and damage from the double blow of flood and drought in Mozambique;Brida;Int. J. Glob.Warm.,2013

4. Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability;Chen;Global Change Biol.,2011

5. Smallholder farming systems in Asia;Devendra;Agric. Syst.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3