Utilization of graphene as an alternative sustainable amendment in improving soil health through accelerated decomposition of oil palm mulch and enhanced nutrient availability

Author:

Khomphet Thanet,Hussain Tajamul

Abstract

Graphene has unique properties for improving soil health properties such as nutrient availability, soil physical and chemical properties, and controlled release of essential elements. This research aimed at determining the impact of graphene amendment on the decomposition of oil palm frond mulching and on soil health status. The study was conducted using a factorial experiment in completely randomized design with two main factors: (i) covering conditions: cover with plastic sheet and no cover, and (ii) graphene application that included T1 (control): oil palm frond mulching (OFM), T2: OFM + graphene (G), T3: OFM + G + chemical fertilizer, and T4: OFM + G + goat manure. The results indicated that there were significant differences among graphene applications, between cover conditions, and in interactions between graphene applications and cover conditions for all soil characteristics in the most observed month. In the third month of soil analysis, the treatment of graphene applications showed higher electrical conductivity (T2: 151.7 ± 6.8 µS cm−1), available phosphorus (T3: 9.0 ± 6.7 mg kg−1), exchangeable potassium (T2: 67.1 ± 24.9 mg kg−1), and exchangeable calcium (T3: 95.4 ± 5.1 mg kg−1), compared to control. The cover condition showed suitable soil pH (5.0 ± 0.2), higher soil available phosphorus (7.1 ± 5.0 mg kg−1), and exchangeable calcium (599.1 ± 235.2 mg kg−1), but the no-cover condition presented higher soil organic matter (0.7% ± 0.2%), exchangeable potassium (60.3 ± 19.1 mg kg−1), and exchangeable magnesium (96.7 ± 11.4 mg kg−1). Correlation results indicated that most soil characteristics were correlated under graphene applications. Principal component analysis showed that the treatments of graphene application dominated most soil characteristics. The results suggest that graphene has potential for improving soil health properties and can be applied as an alternative sustainable amendment to accelerate the decomposition of oil palm frond mulch and enhance nutrient availability for oil palm. In addition, the authors suggest that further investigations should consider more soil health parameters in long-term field studies for a better understanding and to provide recommendations to farmers.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3