Model-based climate change adaptational potential and productivity of some cowpea genotypes and its sensitivity to bias adjustment

Author:

Adusei Grace,Aidoo Moses Kwame,Srivastava Amit Kumar,Asibuo James Yaw,Gaiser Thomas

Abstract

Grain legumes are essential for the protein supply to an ever-growing population in Africa. However, little is known about the adaptational potential and thus resilience to abiotic stress of major grain legumes under future climatic change for the evaluation of climate change impact and adaptation. This study assessed the adaptation potential of some cowpea genotypes to future climate change in the moist (Kumasi—Ghana) and dry savanna (Ouagadougou—Burkina Faso) biomes of West Africa based on a validated process-based SIMPLACE model using the output of four global circulation models (GCMs) for two shared socioeconomic pathways (SSPs, i.e., ssp126 and 585). In addition, it assesses the sensitivity of the cowpea model to bias corrections of the GCM outputs. In comparison of future socioeconomic pathways with historic time series, the use of bias-corrected climate model output slightly increased the rate of the phenological development of the genotypes in the future period except in Ouagadougou, in the ssp585 scenario. Without bias correction, this increase of the rate of phenological development in the future scenarios was less pronounced. With bias correction, the total aboveground biomass and yield of all genotypes were reduced in both SSPs. The change in the average water stress and phosphorous stress were genotype specific. Despite a general yield decline in both SSPs, the genotypes Asontem and GH6060 exhibited the adaptational potential to future climate change in the moist and dry savanna biomes. This is by a higher accumulation of total aboveground biomass, higher yield, and tolerance to high temperature as well as high water use and photosynthetic efficiency due to higher atmospheric carbon dioxide concentrations, despite faster phenological development.

Publisher

Frontiers Media SA

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Sustainable Development Goals Through Future Vapor Pressure Deficit Analysis In The Nile River Basin;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3