Can salt-adapted microorganisms alleviate salt stress in plants and enhance their non-specific resilience?

Author:

Margarita Saubenova,Sviatoslav Maksimovich,Yelena Oleinikova,Makhpal Yelubaeva

Abstract

Global climate change presents various challenges to agricultural biotechnology in developing crops with increased resilience to various adverse natural conditions. Given the importance of this problem, we explored the mechanisms of plant salt tolerance and the role of plant-associated microbes, in mediating important physiological and metabolic processes that increase plant resistance to salt stress. Understanding the physiological, metabolic, and molecular responses of the entire plant holobiont, primarily including microorganisms, to the combination of abiotic stresses may be the key to developing more effective methods of combating various stress conditions and increasing agricultural efficiency. This work encompassed 86 peer-reviewed articles focused on various aspects of plant development in saline conditions and especially on key mechanisms of mitigating stress conditions, including the role of rhizobiome and endophytic microorganisms. It is shown that host plants and various microorganisms can form complex relationships where each organism plays a specific role in forming tolerance to stress conditions. Our review proposes that studying microorganisms that are resistant to soil salinity can lead to the development of new strategies to combat salinization and improve crop stress resistance. The paper concludes that using salt-adapted biostimulant microorganisms, which are natural components of agricultural plant microbiomes, is a highly promising research area.

Publisher

Frontiers Media SA

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3