Growth and development of multiple waterhemp (Amaranthus tuberculatus) cohorts in corn and soybeans

Author:

Arsenijevic Nikola,DeWerff Ryan,Conley Shawn,Ruark Matthew Dwain,Werle Rodrigo

Abstract

Waterhemp is a troublesome weed species in cropping systems throughout Wisconsin and much of the US Midwest. Coupled with extended emergence window, rapid growth, high genetic diversity, and herbicide resistance to multiple sites of action, waterhemp represents a major challenge for chemical-based weed control. The objective of this experiment was to evaluate the impact of soybean and corn canopy on growth and development of multiple waterhemp cohorts in 2019 and 2020. Treatments consisted of narrow- (38 cm row spacing) and wide-row (76 cm row spacing) soybeans, corn (76 cm row spacing), and fallow (no crop), with 6 waterhemp transplant timings (cohorts) in 2019 and 2020, respectively. Waterhemp seedlings grown in the greenhouse were transplanted at the 2-3 true leaves growth stage to the field at 10-day increments throughout the typical waterhemp emergence season for Wisconsin (June-July). Waterhemp plants were measured for height and harvested for biomass when they reached the flowering stage. The number of days from the first transplant timing to result in 50% and 90% biomass and height reduction (ED50 and ED90) of subsequent waterhemp cohorts were estimated and used as indicators of weed suppression ability by the respective crop. Narrow-row soybeans required fewer days to suppress 50% growth of new waterhemp cohorts followed by corn, wide row soybeans, and fallow, respectively (4, 6, 9, and 14 d for 50% biomass reduction, and 10, 14, 18, and 42 d for 50% height reduction, respectively). Similarly, narrow-row soybeans required fewer days to suppress 90% biomass of waterhemp, followed by corn, wide-row soybeans, and fallow (11, 15, 18, and 78 d, respectively). Conversely, narrow and wide-row soybeans required fewer days to suppress 90% height of new waterhemp cohorts followed by corn and fallow (20, 26, 43, and 85 d, respectively). Rapid soybean canopy closure (e.g., planting soybeans earlier and in narrow row-spacing) combined with other integrated weed management practices have the potential to reduce reliance on POST herbicide application and mitigate herbicide resistance evolution. In corn, mid- to late-season monitoring and management of later emerging waterhemp cohorts is recommended due to longer time required to reach 90% waterhemp growth suppression.

Publisher

Frontiers Media SA

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3