Hybridization Slows Rate of Evolution in Crop-Wild Compared to Wild Populations of Weedy Raphanus Across a Moisture Gradient

Author:

Shukla Kruti,Sbrizzi Serena,Laursen Andrew E.,Benavides Jessica,Campbell Lesley G.

Abstract

Hybrid offspring of crops and their wild relatives commonly possess non-adaptive phenotypes and diminished fitness. Regularly, diminished success in early-generation hybrid populations is interpreted to suggest reduced biosafety risk regarding the unintended escape of novel traits from crop populations. Yet hybrid populations have been known to evolve to recover fitness relative to wild progenitors and can do so more rapidly than wild populations, although rates of evolution (for both hybrid populations and their wild progenitors) are sensitive to environmental context. In this research, we asked whether hybrid populations evolved more rapidly than wild populations in the context of soil moisture. We estimated evolutionary rates for 40 Raphanus populations that varied in their history of hybridization and environmental context (imposed by an experimental moisture cline) in two common gardens. After five generations of growing wild and crop-wild hybrid populations across a soil-moisture gradient, hybrid populations exhibited increased seedling emergence frequencies (~6% more), earlier emergence (~1 day), later flowering (~3 days), and larger body size (15–35%)—traits correlated with fitness—relative to wild populations. Hybrid populations, however, exhibited slower evolutionary rates than wild populations. Moreover, the rate of evolution in hybrid populations was consistent across evolutionary watering environments, but varied across watering environments in wild populations. These consistent evolutionary rates exhibited in hybrid populations suggests the evolution of robust traits that perform equally across soil moisture environments—a survival strategy characterized as “jack of all trades.” Although, diverse integrated weed management practices must be applied to wild and hybrid genotypes to diversify selection on these populations, evaluating the evolutionary rates of weeds in diverse environments will support the development of multi-faceted weed control strategies and effective integrated weed management policies.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Reference113 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3