Oasis agriculture revitalization and carbon sequestration for climate-resilient communities

Author:

Dhawi Faten,Aleidan Megbel M.

Abstract

Revitalizing oasis agriculture, an age-old human endeavor, has historically played a crucial role in sustaining biodiversity and ecosystems in arid regions. Nevertheless, this enduring practice now faces contemporary challenges, including global warming, water scarcity, soil erosion, and negative human activities associated with urbanization. This comprehensive review delves into diverse literature across disciplines, covering topics such as water conservation, biodiversity restoration, agroforestry, and Oasis Holistic Management, with the aim of addressing these challenges. The analysis strongly advocates for the urgent adoption of sustainable practices, including precision irrigation, polyculture, organic farming, agroforestry, and community-based initiatives, to ensure the survival of oasis agriculture and foster long-term environmental and social responsibility. The study underscores the imperative need for the development of “comprehensive, flexible, and forward-looking management strategies” to guide the sustainable revival of oasis farming. By consolidating information from various studies, it lays the groundwork for informed decision-making and policy formulation. As part of revitalizing the oasis agricultural ecosystem and addressing the global climate crisis, we propose a noninvasive tool for assessing carbon sequestration effectiveness based on tree specifications. Recognizing the pivotal role of vegetation in mitigating the ecological impact and facing global crises, we explored parameters influencing plant carbon sequestration, including biomass production, growth rate, longevity, root structure, leaf structure, and average temperature tolerance.

Publisher

Frontiers Media SA

Reference227 articles.

1. Performance evaluation and optimization of water distribution networks in arid regions: A case study of aswan governorate, egypt;Abdel-Latif;Groundwater Sustain. Dev.,2021

2. Assessing the environmental impacts of brick kiln emissions in assiut, egypt;Abou-Elkheir;Environ. pollut.,2018

3. Molecular basis of plant nutrient use efficiency-concepts and challenges for its improvement;Adhikari,2023

4. From the history of the culture of farming in the Oasis Of Lower Zarafshan;Ahmadovna;Cent. Asian J. Soc. Sci. history,2021

5. Climate-resilient agriculture: A review on concepts and strategies;Ahmed;Sustainability,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3