Modelling autonomous vehicle interactions with bicycles in traffic simulation

Author:

Rampf Felix,Grigoropoulos Georgios,Malcolm Patrick,Keler Andreas,Bogenberger Klaus

Abstract

With the undeniable advance of automated vehicles and their gradual integration in day-today urban traffic, many new technologies have been developed that offer great potential for this emerging field of research. However, testing automated vehicle technologies in real road traffic with vulnerable road users (VRUs) is still a complicated and time consuming procedure. The virtual development and evaluation of automated vehicles using simulation tools offers a good opportunity to test new functions efficiently. However, existing models prove to be insufficient in modeling the interaction between autonomous vehicles and vulnerable road users such as bicyclists and pedestrians. In this paper, an automated vehicle model for microscopic traffic simulation tools is developed with the open-source traffic simulation software Simulation of Urban Mobility (SUMO) and evaluated in common traffic interaction scenarios with bicyclists. A controller model is proposed using different path-finding algorithms from the field of robotic and automated vehicle research, which covers all important control levels of a self-driving vehicle. Finally, its performance is compared to existing car-following and lane-changing models. Results showcase that the autonomous vehicle model achieves either comparable results or has a much steadier and more realistic driving behavior when compared to existing driving models while interacting with bicyclists. The whole source code developed over the course of this work is freely accessible at: https://github.com/FlixFix/Kimarite.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference19 articles.

1. Sumo based platform for cooperative intelligent automotive agents;Alekszejenkó;EPiC Ser. Comput.,2019

2. Dynamic network simulation with aimsun;Barceló,2005

3. CARLA: An open urban driving simulator;Dosovitskiy,2017

4. Microscopic traffic flow simulator VISSIM;Fellendorf,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3