What Makes You Hold on to That Old Car? Joint Insights From Machine Learning and Multinomial Logit on Vehicle-Level Transaction Decisions

Author:

Jin Ling,Lazar Alina,Brown Caitlin,Sun Bingrong,Garikapati Venu,Ravulaparthy Srinath,Chen Qianmiao,Sim Alexander,Wu Kesheng,Ho Tin,Wenzel Thomas,Spurlock C. Anna

Abstract

What makes you hold on to that old car? While the vast majority of household vehicles are still powered by conventional internal combustion engines, the progress of adopting emerging vehicle technologies will critically depend on how soon the existing vehicles are transacted out of the household fleet. Leveraging a nationally representative longitudinal data set, the Panel Study of Income Dynamics, this study examines how household decisions to dispose of or replace a given vehicle are: 1) influenced by the vehicle’s attributes, 2) mediated by households’ concurrent socio-demographic and economic attributes, and 3) triggered by key life cycle events. Coupled with a newly developed machine learning interpretation tool, TreeExplainer, we demonstrate an innovative use of machine learning models to augment traditional logit modeling to both generate behavioral insights and improve model performance. We find the two gradient-boosting-based methods, CatBoost and LightGBM, are the best performing machine learning models for this problem. The multinomial logistic model can achieve similar performance levels after its model specification is informed by TreeExplainer. Both machine learning and multinomial logit models suggest that while older vehicles are more likely to be disposed of or replaced than newer ones, such probability decreases as the vehicles serve the family longer. Pickup trucks and sport utility vehicles are less likely to be disposed of or replaced than cars, and leased vehicles are more likely to be transacted than owned vehicles. We find that married families, families with higher education levels, homeowners, and older families tend to keep their vehicles longer. Life events such as childbirth, residential relocation, and change of household composition and income are found to increase vehicle disposal and/or replacement. We provide additional insights on the timing of vehicle replacement or disposal, in particular, the presence of children and childbirth events are more strongly associated with vehicle replacement among younger parents.

Funder

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3