Comparative study of time-frequency transformation methods for ECG signal classification

Author:

Song Min-Seo,Lee Seung-Bo

Abstract

In this study, we highlighted the growing need for automated electrocardiogram (ECG) signal classification using deep learning to overcome the limitations of traditional ECG interpretation algorithms that can lead to misdiagnosis and inefficiency. Convolutional neural networks (CNN) application to ECG signals is gaining significant attention owing to their exceptional image-classification capabilities. However, we addressed the lack of standardized methods for converting 1D ECG signals into 2D-CNN-compatible input images by using time-frequency methods and selecting hyperparameters associated with these methods, particularly the choice of function. Furthermore, we investigated the effects of fine-tuned training, a technique where pre-trained weights are adapted to a specific dataset, on 2D-CNNs for ECG classification. We conducted the experiments using the MIT-BIH Arrhythmia Database, focusing on classifying premature ventricular contractions (PVCs) and abnormal heartbeats originating from ventricles. We employed several CNN architectures pre-trained on ImageNet and fine-tuned using the proposed ECG datasets. We found that using the Ricker Wavelet function outperformed other feature extraction methods with an accuracy of 96.17%. We provided crucial insights into CNNs for ECG classification, underscoring the significance of fine-tuning and hyperparameter selection in image transformation methods. The findings provide valuable guidance for researchers and practitioners, improving the accuracy and efficiency of ECG analysis using 2D-CNNs. Future research avenues may include advanced visualization techniques and extending CNNs to multiclass classification, expanding their utility in medical diagnosis.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3