COVID-19 respiratory sound analysis and classification using audio textures

Author:

Silva Leticia,Valadão Carlos,Lampier Lucas,Delisle-Rodríguez Denis,Caldeira Eliete,Bastos-Filho Teodiano,Krishnan Sridhar

Abstract

Since the COVID-19 outbreak, a major scientific effort has been made by researchers and companies worldwide to develop a digital diagnostic tool to screen this disease through some biomedical signals, such as cough, and speech. Joint time–frequency feature extraction techniques and machine learning (ML)-based models have been widely explored in respiratory diseases such as influenza, pertussis, and COVID-19 to find biomarkers from human respiratory system-generated acoustic sounds. In recent years, a variety of techniques for discriminating textures and computationally efficient local texture descriptors have been introduced, such as local binary patterns and local ternary patterns, among others. In this work, we propose an audio texture analysis of sounds emitted by subjects in suspicion of COVID-19 infection using time–frequency spectrograms. This approach of the feature extraction method has not been widely used for biomedical sounds, particularly for COVID-19 or respiratory diseases. We hypothesize that this textural sound analysis based on local binary patterns and local ternary patterns enables us to obtain a better classification model by discriminating both people with COVID-19 and healthy subjects. Cough, speech, and breath sounds from the INTERSPEECH 2021 ComParE and Cambridge KDD databases have been processed and analyzed to evaluate our proposed feature extraction method with ML techniques in order to distinguish between positive or negative for COVID-19 sounds. The results have been evaluated in terms of an unweighted average recall (UAR). The results show that the proposed method has performed well for cough, speech, and breath sound classification, with a UAR up to 100.00%, 60.67%, and 95.00%, respectively, to infer COVID-19 infection, which serves as an effective tool to perform a preliminary screening of COVID-19.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Reference36 articles.

1. Spectrotemporal analysis using local binary pattern variants for acoustic scene classification;Abidin;IEEE/ACM Trans. Audio Speech Lang. Process.,2018

2. Fall detection through acoustic local ternary patterns;Adnan;Appl. Acoust.,2018

3. Covid-19 pulmonary consolidations detection in chest x-ray using progressive resizing and transfer learning techniques;Bhatt;Heliyon,2021

4. Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data

5. Transfer learning and data augmentation techniques to the Covid-19 identification tasks in compare 2021;Casanova;22nd annual conference of the international speech communication associationINTERSPEECH,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3