Synthetic data generation techniques for training deep acoustic siren identification networks

Author:

Damiano Stefano,Cramer Benjamin,Guntoro Andre,van Waterschoot Toon

Abstract

Acoustic sensing has been widely exploited for the early detection of harmful situations in urban environments: in particular, several siren identification algorithms based on deep neural networks have been developed and have proven robust to the noisy and non-stationary urban acoustic scene. Although high classification accuracy can be achieved when training and evaluating on the same dataset, the cross-dataset performance of such models remains unexplored. To build robust models that generalize well to unseen data, large datasets that capture the diversity of the target sounds are needed, whose collection is generally expensive and time consuming. To overcome this limitation, in this work we investigate synthetic data generation techniques for training siren identification models. To obtain siren source signals, we either collect from public sources a small set of stationary, recorded siren sounds, or generate them synthetically. We then simulate source motion, acoustic propagation and Doppler effect, and finally combine the resulting signal with background noise. This way, we build two synthetic datasets used to train three different convolutional neural networks, then tested on real-world datasets unseen during training. We show that the proposed training strategy based on the use of recorded source signals and synthetic acoustic propagation performs best. In particular, this method leads to models that exhibit a better generalization ability, as compared to training and evaluating in a cross-dataset setting. Moreover, the proposed method loosens the data collection requirement and is entirely built using publicly available resources.

Publisher

Frontiers Media SA

Reference39 articles.

1. Large-scale audio dataset for emergency vehicle sirens and road noises;Asif;Sci. Data,2022

2. An automatic emergency signal recognition system for the hearing impaired;Beritelli,2006

3. Acoustic features for deep learning-based models for emergency Siren detection: an evaluation study;Cantarini,2021

4. Few-shot emergency Siren detection;Cantarini;Sensors,2022

5. Detection of alarm sounds in noisy environments;Carmel,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3