Low Dose CT Denoising by ResNet With Fused Attention Modules and Integrated Loss Functions

Author:

Marcos Luella,Alirezaie Javad,Babyn Paul

Abstract

X-ray computed tomography (CT) is a non-invasive medical diagnostic tool that has raised public concerns due to the associated health risks of radiation dose to patients. Reducing the radiation dose leads to noise artifacts, making the low-dose CT images unreliable for diagnosis. Hence, low-dose CT (LDCT) image reconstruction techniques have offered a new research area. In this study, a deep neural network is proposed, specifically a residual network (ResNet) using dilated convolution, batch normalization, and rectified linear unit (ReLU) layers with fused spatial- and channel-attention modules to enhance the quality of LDCT images. The network is optimized using the integration of per-pixel loss, perceptual loss via VGG16-net, and dissimilarity index loss. Through an ablation experiment, these functions show that they could effectively prevent edge oversmoothing, improve image texture, and preserve the structural details. Finally, comparative experiments showed that the qualitative and quantitative results of the proposed network outperform state-of-the-art denoising models such as block-matching 3D filtering (BM3D), Markovian-based patch generative adversarial network (patch-GAN), and dilated residual network with edge detection (DRL-E-MP).

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Reference35 articles.

1. Towards Principled Methods for Training Generative Adversarial Networks;Arjovsky;Stat,2017

2. Cascaded Convolutional Neural Networks with Perceptual Loss for Low Dose CT Denoising;Ataei;Int. Jt. Conf. Neural Netw. (IJCNN)

3. Low Dose CT Denoising Using Dilated Residual Learning with Perceptual Loss and Structural Dissimilarity;Ataei

4. Noise Conscious Training of Non Local Neural Network Powered by Self Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising;Bera;IEEE Trans. Med. Imaging,2021

5. Image Quality Comparison between a Phase-Contrast Synchrotron Radiation Breast CT and a Clinical Breast CT: a Phantom Based Study;Brombal;Sci. Rep.,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3