Performance evaluation of automatic speech recognition systems on integrated noise-network distorted speech

Author:

Kumalija Elhard,Nakamoto Yukikazu

Abstract

In VoIP applications, such as Interactive Voice Response and VoIP-phone conversation transcription, speech signals are degraded not only by environmental noise but also by transmission network quality, and distortions induced by encoding and decoding algorithms. Therefore, there is a need for automatic speech recognition (ASR) systems to handle integrated noise-network distorted speech. In this study, we present a comparative analysis of a speech-to-text system trained on clean speech against one trained on integrated noise-network distorted speech. Training an ASR model on noise-network distorted speech dataset improves its robustness. Although the performance of an ASR model trained on clean speech depends on noise type, this is not the case when noise is further distorted by network transmission. The model trained on noise-network distorted speech exhibited a 60% improvement rate in the word error rate (WER), word match rate (MER), and word information lost (WIL) over the model trained on clean speech. Furthermore, the ASR model trained with noise-network distorted speech could tolerate a jitter of less than 20% and a packet loss of less than 15%, without a decrease in performance. However, WER, MER, and WIL increased in proportion to the jitter and packet loss as they exceeded 20% and 15%, respectively. Additionally, the model trained on noise-network distorted speech exhibited higher robustness compared to that trained on clean speech. The ASR model trained on noise-network distorted speech can also tolerate signal-to-noise (SNR) values of 5 dB and above, without the loss of performance, independent of noise type.

Publisher

Frontiers Media SA

Reference33 articles.

1. Common voice: A massively-multilingual speech corpus;Ardila,2020

2. The third ‘chime’ speech separation and recognition challenge: Dataset, task and baselines;Barker,2015

3. The pascal chime speech separation and recognition challenge;Barker;Comput. Speech Lang.,2013

4. The fifth ’CHiME’ speech separation and recognition challenge: Dataset, task and baselines;Barker;Proc. Interspeech,2018

5. Ctimit: A speech corpus for the cellular environment with applications to automatic speech recognition;Brown;ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc.,1995

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3