High Throughput JPEG 2000 for Video Content Production and Delivery Over IP Networks

Author:

Taubman David,Naman Aous,Smith Michael,Lemieux Pierre-Anthony,Saadat Hassaan,Watanabe Osamu,Mathew Reji

Abstract

ITU-T Rec T.814 | IS 15444-15, known as High Throughput JPEG 2000, or simply HTJ2K, is Part-15 in the JPEG 2000 series of standards, published in 2019 by the ITU and ISO/IEC. JPEG 2000 Part-1 has long been used as a key component in the production, archival and distribution of video content, as the distribution format for Digital Cinema, and an Interoperable Master Format from which streaming video services are commonly derived. JPEG 2000 has one of the richest feature sets of any coding standard, including scalability, region-of-interest accessibility and non-iterative optimal rate control. HTJ2K addresses a long-standing limitation of the original JPEG 2000 family of standards: relatively low throughput on CPU and GPU platforms. HTJ2K introduces an alternative block coding algorithm that allows extremely high processing throughputs, while preserving all other aspects of the JPEG 2000 framework and offering truly reversible transcoding with the original block coded representation. This paper demonstrates the benefits that HTJ2K brings to video content production and delivery, including cloud-based processing workflows and low latency video content streaming over IP networks, considering CPU, GPU and FPGA-based platforms. For non-iterative optimal rate control, HTJ2K encoders with the highest throughputs and lowest hardware encoding footprints need a strategy for constraining the number of so-called HT-Sets that are generated ahead of the classic Post-Compression Rate-Distortion optimization (PCRD-opt) process. This paper describes such a strategy, known as CPLEX, that involves a second (virtual) rate-control process. The novel combination of this virtual (CPLEX) and actual (PCRD-opt) processes has many benefits, especially for hardware encoders, where memory size and memory bandwidth are key indicators of complexity.

Publisher

Frontiers Media SA

Reference17 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3