A Tutorial on Bandit Learning and Its Applications in 5G Mobile Edge Computing (Invited Paper)

Author:

Liu Sige,Cheng Peng,Chen Zhuo,Vucetic Branka,Li Yonghui

Abstract

Due to the rapid development of 5G and Internet-of-Things (IoT), various emerging applications have been catalyzed, ranging from face recognition, virtual reality to autonomous driving, demanding ubiquitous computation services beyond the capacity of mobile users (MUs). Mobile cloud computing (MCC) enables MUs to offload their tasks to the remote central cloud with substantial computation and storage, at the expense of long propagation latency. To solve the latency issue, mobile edge computing (MEC) pushes its servers to the edge of the network much closer to the MUs. It jointly considers the communication and computation to optimize network performance by satisfying quality-of-service (QoS) and quality-of-experience (QoE) requirements. However, MEC usually faces a complex combinatorial optimization problem with the complexity of exponential scale. Moreover, many important parameters might be unknown a-priori due to the dynamic nature of the offloading environment and network topology. In this paper, to deal with the above issues, we introduce bandit learning (BL), which enables each agent (MU/server) to make a sequential selection from a set of arms (servers/MUs) and then receive some numerical rewards. BL brings extra benefits to the joint consideration of offloading decision and resource allocation in MEC, including the matched mechanism, situation awareness through learning, and adaptability. We present a brief tutorial on BL of different variations, covering the mathematical formulations and corresponding solutions. Furthermore, we provide several applications of BL in MEC, including system models, problem formulations, proposed algorithms and simulation results. At last, we introduce several challenges and directions in the future research of BL in 5G MEC.

Publisher

Frontiers Media SA

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cache content placement in the presence of fictitious requests in mmWave 5G IAB networks;Ad Hoc Networks;2024-10

2. Multi-Agent Multi-Armed Bandit Learning for Grant-Free Access in Ultra-Dense IoT Networks;IEEE Transactions on Cognitive Communications and Networking;2024-08

3. Fair Distributed Cooperative Bandit Learning on Networks for Intelligent Internet of Things Systems;2024 IEEE International Conference on Communications Workshops (ICC Workshops);2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3