Handling Radar Cross-Section Performance in Monitoring Vital Signs Under Constraint Conditions

Author:

Khan Faheem,Sherazi Saleh M.,Khan Naeem,Ashraf Imran,Khan Fahad

Abstract

Two vital signs including heartbeat and respiratory rate are monitored in this work under two constraint situations; namely noise disturbance and intermittent observations. The existing scheme for finding, measuring and monitoring vital signs was Fourier Transform which could not deal with non-stationary process. As an alternative, the Wavelet Transform is used in this work which is equally applicable to both stationary and non-stationary processes. Additionally, the loss of output data may result in crucial implications in observing vital signs. Formerly, only un-interrupted data has been amalgamated in tracing vital signs. A novel adaptive ARMA-based scheme is proposed to obtain optimum estimated results in the presence of the above two critical scenarios. Simulation results obtained on real (practical) data show that the ARMA-based model produces similar vital signs as shown by clean and un-distorted data. It is shown that the proposed ARMA-based algorithm improves the breathing rate accuracy by 0.3% and heart rate accuracy by 2.5% as compared to the existing AR-based vital signal reconstruction algorithm.

Publisher

Frontiers Media SA

Reference31 articles.

1. A 118-mw Pulse-Based Radar Soc in 55-nm Cmos for Non-Contact Human Vital Signs Detection;Andersen;IEEE J. Solid-State Circuits,2017

2. Uwb Propagation Measurements and Modelling in Large Indoor Environments;Briso;IEEE Access,2019

3. Characterization of the Ultra-Wideband Channel;Buehrer,2003

4. Vital Sign Detection and Radar Self-Motion Cancellation through Clutter Identification;Cardillo;IEEE Trans. Microwave Theor. Techn.,2021

5. Through-wall UWB Radar Operating within FCC's Mask for Sensing Heart Beat and Breathing Rate;Chia,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3