The disparity between optimal and practical Lagrangian multiplier estimation in video encoders

Author:

Ringis Daniel Joseph,Vibhoothi ,Pitié François,Kokaram Anil

Abstract

With video streaming making up 80% of the global internet bandwidth, the need to deliver high-quality video at low bitrate, combined with the high complexity of modern codecs, has led to the idea of a per-clip optimisation approach in transcoding. In this paper, we revisit the Lagrangian multiplier parameter, which is at the core of rate-distortion optimisation. Currently, video encoders use prediction models to set this parameter but these models are agnostic to the video at hand. We explore the gains that could be achieved using aper-clipdirect-search optimisation of the Lagrangian multiplier parameter. We evaluate this optimisation framework on a much larger corpus of videos than that has been attempted by previous research. Our results show that per-clip optimisation of the Lagrangian multiplier leads to BD-Rate average improvements of 1.87% for x265 across a 10 k clip corpus of modern videos, and up to 25% in a single clip. Average improvements of 0.69% are reported for libaom-av1 on a subset of 100 clips. However, we show that a per-clip, per-frame-type optimisation ofλfor libaom-av1 can increase these average gains to 2.5% and up to 14.9% on a single clip. Our optimisation scheme requires about 50–250 additional encodes per-clip but we show that significant speed-up can be made using proxy videos in the optimisation. These computational gains (of up to ×200) incur a slight loss to BD-Rate improvement because the optimisation is conducted at lower resolutions. Overall, this paper highlights the value of re-examining the estimation of the Lagrangian multiplier in modern codecs as there are significant gains still available without changing the tools used in the standards.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference43 articles.

1. Per-title encode optimization;Aaron;Netflix Techblog,2015

2. Calculation of average PSNR differences between RD curves; VCEG-M33;Bjøntegaard,2001

3. The age of the zettabyte cisco: The future of internet traffic is video dataflow;Cass;IEEE Spectr.,2014

4. An overview of core coding tools in the av1 video codec;Chen,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3