Deep Learning-Based Object Tracking via Compressed Domain Residual Frames

Author:

El Khoury Karim,Samelson Jonathan,Macq Benoît

Abstract

The extensive rise of high-definition CCTV camera footage has stimulated both the data compression and the data analysis research fields. The increased awareness of citizens to the vulnerability of their private information, creates a third challenge for the video surveillance community that also has to encompass privacy protection. In this paper, we aim to tackle those needs by proposing a deep learning-based object tracking solution via compressed domain residual frames. The goal is to be able to provide a public and privacy-friendly image representation for data analysis. In this work, we explore a scenario where the tracking is achieved directly on a restricted part of the information extracted from the compressed domain. We utilize exclusively the residual frames already generated by the video compression codec to train and test our network. This very compact representation also acts as an information filter, which limits the amount of private information leakage in a video stream. We manage to show that using residual frames for deep learning-based object tracking can be just as effective as using classical decoded frames. More precisely, the use of residual frames is particularly beneficial in simple video surveillance scenarios with non-overlapping and continuous traffic.

Publisher

Frontiers Media SA

Reference38 articles.

1. Block Matching Algorithms for Motion Estimation;Barjatya;Final Project Paper for Spring 2004 Digital Image Processing Course at the Utah State Univ.,2004

2. Evaluating Multiple Object Tracking Performance: The clear Mot Metrics;Bernardin;EURASIP J. Image Video Process.,2008

3. Simple Online and Realtime Tracking;Bewley,2016

4. High-speed Tracking-By-Detection without Using Image Information;Bochinski,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3