Speech Localization at Low Bitrates in Wireless Acoustics Sensor Networks

Author:

Mansali Mariem Bouafif,Zarazaga Pablo Pérez,Bäckström Tom,Lachiri Zied

Abstract

The use of speech source localization (SSL) and its applications offer great possibilities for the design of speaker local positioning systems with wireless acoustic sensor networks (WASNs). Recent works have shown that data-driven front-ends can outperform traditional algorithms for SSL when trained to work in specific domains, depending on factors like reverberation and noise levels. However, such localization models consider localization directly from raw sensor observations, without consideration for transmission losses in WASNs. In contrast, when sensors reside in separate real-life devices, we need to quantize, encode and transmit sensor data, decreasing the performance of localization, especially when the transmission bitrate is low. In this work, we investigate the effect of low bitrate transmission on a Direction of Arrival (DoA) estimator. We analyze a deep neural network (DNN) based framework performance as a function of the audio encoding bitrate for compressed signals by employing recent communication codecs including PyAWNeS, Opus, EVS, and Lyra. Experimental results show that training the DNN on input encoded with the PyAWNeS codec at 16.4 kB/s can improve the accuracy significantly, and up to 50% of accuracy degradation at a low bitrate for almost all codecs can be recovered. Our results further show that for the best accuracy of the trained model when one of the two channels can be encoded with a bitrate higher than 32 kB/s, it is optimal to have the raw data for the second channel. However, for a lower bitrate, it is preferable to similarly encode the two channels. More importantly, for practical applications, a more generalized model trained with a randomly selected codec for each channel, shows a large accuracy gain when at least one of the two channels is encoded with PyAWNeS.

Publisher

Frontiers Media SA

Reference30 articles.

1. PyAWNeS-Codec: Speech and Audio Codec for Ad-Hoc Acoustic Wireless Sensor Networks;Bäckström,2021

2. Greedy Layerwise Training of Deep Networks;Bengio;Adv. Neural Inf. Process. Syst.,2007

3. Representation Learning: A Review and New Perspectives;Bengio;IEEE Trans. Pattern Anal. Mach. Intell.,2013

4. Codec for Enhanced Voice Services (Evs)-The New 3gpp Codec for Communication;Bruhn,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3