Data-driven airborne bayesian forward-looking superresolution imaging based on generalized Gaussian distribution

Author:

Chen Hongmeng,Wang Zeyu,Zhang Yingjie,Jin Xing,Gao Wenquan,Yu Jizhou

Abstract

Airborne forward-looking radar (AFLR) has been more and more impoatant due to its wide application in the military and civilian fields, such as automatic driving, sea surveillance, airport surveillance and guidance. Recently, sparse deconvolution technique has been paid much attention in AFLR. However, the azimuth resolution performance gradually decreases with the complexity of the imaging scene. In this paper, a data-driven airborne Bayesian forward-looking superresolution imaging algorithm based on generalized gaussian distribution (GGD- Bayesian) for complex imaging scene is proposed. The generalized gaussian distribution is utilized to describe the sparsity information of the imaging scene, which is quite essential to adaptively fit different imaging scenes. Moreover, the mathematical model for forward-looking imaging was established under the maximum a posteriori (MAP) criterion based on the Bayesian framework. To solve the above optimization problem, quasi-Newton algorithm is derived and used. The main contribution of the paper is the automatic selection for the sparsity parameter in the process of forward-looking imaging. The performance assessment with simulated data has demonstrated the effectiveness of our proposed GGD- Bayesian algorithm under complex scenarios.

Publisher

Frontiers Media SA

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3