Dual-Microphone Speech Reinforcement System With Howling-Control for In-Car Speech Communication

Author:

Alkaher Yehav,Cohen Israel

Abstract

In this paper, we address the problem of dual-microphone speech reinforcement for improving in-car speech communication via howling control. A speech reinforcement system acquires speech from a speaker’s microphone and delivers it to the other listeners in the car cabin through loudspeakers. A car cabin’s small space makes it vulnerable to acoustic feedback, resulting in the appearance of howling noises. The proposed system aims to maintain a desired high amplification gain over time while not compromising the output speech quality. The dual-microphone system consists of a microphone for speech acquisition and another microphone that monitors the environment for howling detection, where its location depends on its howling detection sensitivity. The proposed algorithm contains a gain-control segment based on the magnitude-slope-deviation measure, which reduces the amplification-gain in the case of howling detection. To find the optimal locations of the howling-detection microphone in the cabin, for a devised set of scenarios, a Pareto optimization method is applied. The Pareto optimization considers the bi-objective nature of the problem, i.e., minimizing both the relative gain-reduction and the overall speech distortion. It is shown that the proposed dual-microphone system outperforms a single-microphone-based system. The performance improvement is demonstrated by showing the higher howling detection sensitivity of the dual-microphone system. Additionally, a microphone constellation design process, for optimal howling detection, is provided through the utilization of the Pareto fronts and anti-fronts approach.

Publisher

Frontiers Media SA

Reference26 articles.

1. Nondominated Strategies for Cautious to Courageous Aerial Navigation;Alkaher;J. Guidance, Control Dyn.,2018

2. Magnitude-slope-deviation Based Howling-Detector for Speech Reinforcement Systems;Alkaher,2021

3. TCP Congestion Control

4. Single-Channel Signal Enhancement in the Frequency Domain

5. Acoustic Feedback Compensation with Reverb-Based Stepsize Control for Incar Communication Systems;Bulling,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3