Joint image compression and denoising via latent-space scalability

Author:

Ranjbar Alvar Saeed,Ulhaq Mateen,Choi Hyomin,Bajić Ivan V.

Abstract

When it comes to image compression in digital cameras, denoising is traditionally performed prior to compression. However, there are applications where image noise may be necessary to demonstrate the trustworthiness of the image, such as court evidence and image forensics. This means that noise itself needs to be coded, in addition to the clean image itself. In this paper, we present a learning-based image compression framework where image denoising and compression are performed jointly. The latent space of the image codec is organized in a scalable manner such that the clean image can be decoded from a subset of the latent space (the base layer), while the noisy image is decoded from the full latent space at a higher rate. Using a subset of the latent space for the denoised image allows denoising to be carried out at a lower rate. Besides providing a scalable representation of the noisy input image, performing denoising jointly with compression makes intuitive sense because noise is hard to compress; hence, compressibility is one of the criteria that may help distinguish noise from the signal. The proposed codec is compared against established compression and denoising benchmarks, and the experiments reveal considerable bitrate savings compared to a cascade combination of a state-of-the-art codec and a state-of-the-art denoiser.

Publisher

Frontiers Media SA

Reference45 articles.

1. A high-quality denoising dataset for smartphone cameras;Abdelhamed;Proc. CVPR,2018

2. Satellite image compression and denoising with neural networks;Alves de Oliveira;IEEE Geosci. Remote Sens. Lett.,2022

3. End-to-end optimized image compression;Ballé;Proc. ICLR,2017

4. Variational image compression with a scale hyperprior;Ballé;Proc,2018

5. Compressai: A pytorch library and evaluation platform for end-to-end compression research;Bégaint,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3