Author:
Pan Liyan,Gao Yongchan,Ye Zhou,Lv Yuzhou,Fang Ming
Abstract
This paper addresses the detection of a signal belonging to several possible subspace models, namely, a union of subspaces (UoS), where the active subspace that generated the observed signal is unknown. By incorporating the persymmetric structure of received data, we propose three UoS detectors based on GLRT, Rao, and Wald criteria to alleviate the requirement of training data. In addition, the detection statistic and classification bound for the proposed detectors are derived. Monte-Carlo simulations demonstrate the detection and classification performance of the proposed detectors over the conventional detector in training-limited scenarios.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Persymmetric Union Subspace Detection in Structured Interference;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07