Depth Map Super-Resolution via Cascaded Transformers Guidance

Author:

Ariav Ido,Cohen Israel

Abstract

Depth information captured by affordable depth sensors is characterized by low spatial resolution, which limits potential applications. Several methods have recently been proposed for guided super-resolution of depth maps using convolutional neural networks to overcome this limitation. In a guided super-resolution scheme, high-resolution depth maps are inferred from low-resolution ones with the additional guidance of a corresponding high-resolution intensity image. However, these methods are still prone to texture copying issues due to improper guidance by the intensity image. We propose a multi-scale residual deep network for depth map super-resolution. A cascaded transformer module incorporates high-resolution structural information from the intensity image into the depth upsampling process. The proposed cascaded transformer module achieves linear complexity in image resolution, making it applicable to high-resolution images. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art techniques for guided depth super-resolution.

Publisher

Frontiers Media SA

Reference60 articles.

1. A Naturalistic Open Source Movie for Optical Flow Evaluation;Butler,2012

2. End-to-end Object Detection with Transformers;Carion,2020

3. Rgb Guided Depth Map Super-resolution with Coupled U-Net;Cui,2021

4. Deformable Convolutional Networks;Dai,2017

5. Color-guided Depth Recovery via Joint Local Structural and Nonlocal Low-Rank Regularization;Dong;IEEE Trans. Multimedia,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3