Degradation learning and Skip-Transformer for blind face restoration

Author:

Cheikh Sidiya Ahmed,Xu Xuan,Xu Ning,Li Xin

Abstract

Blindrestoration of low-quality faces in the real world has advanced rapidly in recent years. The rich and diverse priors encapsulated by pre-trained face GAN have demonstrated their effectiveness in reconstructing high-quality faces from low-quality observations in the real world. However, the modeling of degradation in real-world face images remains poorly understood, affecting the property of generalization of existing methods. Inspired by the success of pre-trained models and transformers in recent years, we propose to solve the problem of blind restoration by jointly exploiting their power for degradation and prior learning, respectively. On the one hand, we train a two-generator architecture for degradation learning to transfer the style of low-quality real-world faces to the high-resolution output of pre-trained StyleGAN. On the other hand, we present a hybrid architecture, called Skip-Transformer (ST), which combines transformer encoder modules with a pre-trained StyleGAN-based decoder using skip layers. Such a hybrid design is innovative in that it represents the first attempt to jointly exploit the global attention mechanism of the transformer and pre-trained StyleGAN-based generative facial priors. We have compared our DL-ST model with the latest three benchmarks for blind image restoration (DFDNet, PSFRGAN, and GFP-GAN). Our experimental results have shown that this work outperforms all other competing methods, both subjectively and objectively (as measured by the Fréchet Inception Distance and NIQE metrics).

Publisher

Frontiers Media SA

Reference50 articles.

1. Category-specific object image denoising;Anwar;IEEE Trans. Image Process.,2017

2. To learn image super-resolution, use a gan to learn how to do image degradation first;Bulat,2018

3. End-to-end object detection with transformers;Carion,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scene Text Image Super-resolution based on Text-conditional Diffusion Models;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3