Digitalization of toxicology: improving preclinical to clinical translation

Author:

Berridge Brian R.,Baran Szczepan W.,Kumar Vivek,Bratcher-Petersen Natalie,Ellis Michael,Liu Chang-Ning,Robertson Timothy L.

Abstract

Though the portfolio of medicines that are extending and improving the lives of patients continues to grow, drug discovery and development remains a challenging business on its best day. Safety liabilities are a significant contributor to development attrition where the costliest liabilities to both drug developers and patients emerge in late development or post-marketing. Animal studies are an important and influential contributor to the current drug discovery and development paradigm intending to provide evidence that a novel drug candidate can be used safely and effectively in human volunteers and patients. However, translational gaps—such as toxicity in patients not predicted by animal studies—have prompted efforts to improve their effectiveness, especially in safety assessment. More holistic monitoring and “digitalization” of animal studies has the potential to enrich study outcomes leading to datasets that are more computationally accessible, translationally relevant, replicable, and technically efficient. Continuous monitoring of animal behavior and physiology enables longitudinal assessment of drug effects, detection of effects during the animal’s sleep and wake cycles and the opportunity to detect health or welfare events earlier. Automated measures can also mitigate human biases and reduce subjectivity. Reinventing a conservative, standardized, and traditional paradigm like drug safety assessment requires the collaboration and contributions of a broad and multi-disciplinary stakeholder group. In this perspective, we review the current state of the field and discuss opportunities to improve current approaches by more fully leveraging the power of sensor technologies, artificial intelligence (AI), and animal behavior in a home cage environment.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microfluidic systems for modeling digestive cancer: a review of recent progress;Biomedical Physics & Engineering Express;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3