Dynamic Mass Balance Modeling for Chemical Distribution Over Time in In Vitro Systems With Repeated Dosing

Author:

Bloch Sherri,Arnot Jon A.,Kramer Nynke I.,Armitage James M.,Verner Marc-André

Abstract

As toxicologists and risk assessors move away from animal testing and more toward using in vitro models and biological modeling, it is necessary to produce tools to quantify the chemical distribution within the in vitro environment prior to extrapolating in vitro concentrations to human equivalent doses. Although models predicting chemical distribution in vitro have been developed, very little has been done for repeated dosing scenarios, which are common in prolonged experiments where the medium needs to be refreshed. Failure to account for repeated dosing may lead to inaccurate estimations of exposure and introduce bias into subsequent in vitro to in vivo extrapolations. Our objectives were to develop a dynamic mass balance model for repeated dosing in in vitro systems; to evaluate model accuracy against experimental data; and to perform illustrative simulations to assess the impact of repeated doses on predicted cellular concentrations. A novel dynamic in vitro partitioning mass balance model (IV-MBM DP v1.0) was created based on the well-established fugacity approach. We parameterized and applied the dynamic mass balance model to single dose and repeat dosing scenarios, and evaluated the predicted medium and cellular concentrations against available empirical data. We also simulated repeated dosing scenarios for organic chemicals with a range of partitioning properties and compared the in vitro distributions over time. In single dose scenarios, for which only medium concentrations were available, simulated concentrations predicted measured concentrations with coefficients of determination (R2) of 0.85–0.89, mean absolute error within a factor of two and model bias of nearly one. Repeat dose scenario simulations displayed model bias <2 within the cell lysate, and ∼1.5-3 in the medium. The concordance between simulated and available experimental data supports the predictive capacity of the IV-MBM DP v1.0 tool, but further evaluation as empirical data becomes available is warranted, especially for cellular concentrations.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Coordinating Committee

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3