Control and optimization algorithm for lattice power grids with multiple input/output operation for improved versatility

Author:

Zhang Daniel,Fang Jingyang,Goetz Stefan

Abstract

With the proliferation of alternative energy sources, power grids are increasingly dominated by grid-tied power converters. With this development comes the requirement of grid-forming, but current architectures exclude high-voltage applications through serial connectivity. Lattice power grids allow for the generation of both higher voltages and currents than their individual modules by marrying the advantages of serial and parallel connectivity, which include reduced switching and conduction losses, sensorless voltage balancing, and multiport operation. We use graph theory to model lattice power grids and formalize lattice generation processes for square, triangular, and hexagonal lattice grids. This article proposes depth-first-search based algorithms for the control and efficient operation of lattice power grids, achieving voltage and current objectives while minimizing switching losses. Furthermore, we build upon previous algorithms by harnessing multiple input/output operation. The algorithm allows for sequential operation (in which loads are added one by one), simultaneous operation (in which several loads are added at the same time), and combined sequential-simultaneous operation. These methods were applied to a variety of lattice structures, and simulations of dc analysis and pulse train generation were performed. These modeled results validate the proposed algorithms and improve versatility in the operation of lattice power grids in both grid-connected and standalone applications. The potential of applying this method in transcranial magnetic stimulation (TMS) is discussed.

Publisher

Frontiers Media SA

Reference41 articles.

1. A comprehensive review on modular multilevel converters, submodule topologies, and modulation techniques;Barros;Energies,2022

2. Power electronics as efficient interface in dispersed power generation systems;Blaabjerg;IEEE Trans. Power Electron.,2004

3. Transcranial magnetic stimulation: a review of its evolution and current applications;Chail;Ind Psychiatry J,2018

4. “Renewable Energy Growth Rate up 45% Worldwide in 2020. IEA Sees New Normal.” National Public Radio. ChappellB. 2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3