Brief composite mobility index predicts post-stroke fallers after hospital discharge

Author:

Plummer Prudence,Feld Jody A.,Mercer Vicki S.,Ni Pengsheng

Abstract

IntroductionCommunity-dwelling, ambulatory stroke survivors fall at very high rates in the first 3–6 months. Current inpatient clinical assessments for fall risk have inadequate predictive accuracy. We found that a pre-discharge obstacle-crossing test has excellent specificity (83%) but lacks acceptable sensitivity (67%) for identifying would-be fallers and non-fallers post discharge.HypothesisWe assessed the hypothesis that combining the obstacle-crossing test with other highly discriminatory fall risk factors would compensate for the obstacle test’s fair sensitivity and yield an instrument with superior prediction accuracy.Methods45 ambulatory stroke survivors (60 ± 11 years old, 15 ± 11 days post stroke) being discharged home completed a battery of physical performance-based and self-reported measures 1–5 days prior to discharge. After discharge, participants were prospectively followed and classified as fallers (≥1 fall) or non-fallers at 3 months. Pre-discharge measures with the largest effect sizes for differentiating fallers and non-fallers were combined into a composite index. Several variations of the composite index were examined to optimize accuracy.ResultsA 4-item discharge composite index significantly predicted fall status at 3-months. The goodness of fit of the regression model was significantly better than the obstacle-crossing test alone, χ2(1) = 6.036, p = 0.014. Furthermore, whereas the obstacle-crossing test had acceptable overall accuracy (AUC 0.78, 95% CI, 0.60–0.90), the composite index had excellent accuracy (AUC 0.85, 95% CI, 0.74–0.96). Combining the obstacle-crossing test with only the step test produced a model of equivalent accuracy (AUC 0.85, 95% CI, 0.73–0.96) and with better symmetry between sensitivity and specificity (0.71, 0.83) than the 4-item composite index (0.86, 0.67). This 2-item index was validated in an independent sample of n = 30 and with bootstrapping 1,000 samples from the pooled cohorts. The 4-item index was internally validated with bootstrapping 1,000 samples from the derivation cohort plus n = 9 additional participants.ConclusionThis study provides convincing proof-of-concept that strategic aggregation of performance-based and self-reported mobility measures, including a novel and demanding obstacle-crossing test, can predict post-discharge fallers with excellent accuracy. Further instrument development is warranted to construct a brief aggregate tool that will be pragmatic for inpatient use and improve identification of future post-stroke fallers before the first fall.

Funder

National Center for Advancing Translational Sciences, National Institutes of Health, USA

Publisher

Frontiers Media SA

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3