A proposed evidence-guided algorithm for the adjustment and optimization of multi-function articulated ankle-foot orthoses in the clinical setting

Author:

LeCursi Nicholas A.,Janka Beatrice M.,Gao Fan,Orendurff Michael S.,He Yufan,Kobayashi Toshiki

Abstract

Individuals with neuromuscular pathologies are often prescribed an ankle-foot orthosis (AFO) to improve their gait mechanics by decreasing pathological movements of the ankle and lower limb. AFOs can resist or assist excessive or absent muscular forces that lead to tripping, instability, and slow inefficient gait. However, selecting the appropriate AFO with mechanical characteristics, which limit pathological ankle motion in certain phases of the gait cycle while facilitating effective ankle movement during other phases, requires careful clinical decision-making. The aim of this study is to propose an explicit methodology for the adjustment of multi-function articulated AFOs in clinical settings. A secondary aim is to outline the evidence supporting this methodology and to identify gaps in the literature as potential areas for future research. An emerging class of AFO, the multi-function articulated AFO, offers features that permit more comprehensive, iterative, and reversible adjustments of AFO ankle alignment and resistance to ankle motion. However, no standard method exists for the application and optimization of these therapeutic devices in the clinical setting. Here we propose an evidence-guided methodology applicable to the adjustment of multi-function articulated AFOs in the clinical setting. Characteristic load–deflection curves are given to illustrate the idealized yet complex resistance-angle behavior of multi-function articulated AFOs. Research is cited to demonstrate how these mechanical characteristics can help mitigate specific pathologic ankle and knee kinematics and kinetics. Evidence is presented to support the effects of systematic adjustment of high resistance, alignable, articulated AFOs to address many typical pathomechanical patterns observed in individuals with neuromuscular disorders. The published evidence supporting most decision points of the algorithm is presented with identified gaps in the evidence. In addition, two hypothetical case examples are given to illustrate the application of the method in optimizing multi-function articulated AFOs for treating specific gait pathomechanics. This method is proposed as an evidence-guided systematic approach for the adjustment of multi-function articulated AFOs. It utilizes observed gait deviations mapped to specific changes in AFO alignment and resistance settings as a clinical tool in orthotic treatment for individuals with complex neuromuscular gait disorders.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3