Author:
Zhang Xiaoqian,Rong Xiyin,Luo Hanwen
Abstract
Lower limb rehabilitation is essential for recovery post-injury, stroke, or surgery, improving functional mobility and quality of life. Traditional therapy, dependent on therapists' expertise, faces challenges that are addressed by rehabilitation robotics. In the domain of lower limb rehabilitation, machine learning is progressively manifesting its capabilities in high personalization and data-driven approaches, gradually transforming methods of optimizing treatment protocols and predicting rehabilitation outcomes. However, this evolution faces obstacles, including model interpretability, economic hurdles, and regulatory constraints. This review explores the synergy between machine learning and robotic-assisted lower limb rehabilitation, summarizing scientific literature and highlighting various models, data, and domains. Challenges are critically addressed, and future directions proposed for more effective clinical integration. Emphasis is placed on upcoming applications such as Virtual Reality and the potential of deep learning in refining rehabilitation training. This examination aims to provide insights into the evolving landscape, spotlighting the potential of machine learning in rehabilitation robotics and encouraging balanced exploration of current challenges and future opportunities.
Funder
Guangxi Science and Technology Department
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献