Effect of Haptic Training During Manual Wheelchair Propulsion on Shoulder Joint Reaction Moments

Author:

Aissaoui Rachid,Gagnon Dany

Abstract

BackgroundManual wheelchair propulsion remains a very ineffective means of locomotion in terms of energy cost and mechanical efficiency, as more than half of the forces applied to the pushrim do not contribute to move the wheelchair forward. Manual wheelchair propulsion training using the haptic biofeedback has shown an increase in mechanical efficiency at the handrim level. However, no information is available about the impact of this training on the load at the shoulders. We hypothesized that increasing propulsion mechanical efficiency by 10% during propulsion would not yield clinically significant augmentation of the load sustained at the shoulders.MethodsEighteen long-term manual wheelchair users with a spinal cord injury propelled a manual wheelchair over a wheelchair simulator offering the haptic biofeedback. Participants were asked to propel without the Haptic Biofeedback (HB) and, thereafter, they were subjected to five training blocks BL1–BL5 of 3 min in a random order with the haptic biofeedback targeting a 10% increase in force effectiveness. The training blocs such as BL1, BL2 BL3, BL4, and BL5 correspond, respectively, to a resistant moment of 5, 10, 15, 20, and 25%. Pushrim kinetics, shoulder joint moments, and forces during the propulsive cycle of wheelchair propulsion were assessed for each condition.ResultsThe tangential force component increases significantly by 74 and 87%, whereas value for the mechanical effective force increases by 9% between the pretraining and training blocks BL3. The haptic biofeedback resulted in a significant increase of the shoulder moments with 1–7 Nm.ConclusionIncreases in shoulder loads were found for the corresponding training blocks but even though the percentage of the increase seems high, the amplitude of the joint moment remains under the values of wheelchair propulsion found in the literature. The use of the HB simulator is considered here as a safe approach to increase mechanical effectiveness. However, the longitudinal impact of this enhancement remains unknown for the impact on the shoulder joint. Future studies will be focused on this impact in terms of shoulder risk injury during manual wheelchair propulsion.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Haptic Interface Design for a Novel Wheelchair Simulator using Linear Time-Varying MPC Framework;2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM);2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3