Stabilization Strategies for Fast Walking in Challenging Environments With Incomplete Spinal Cord Injury

Author:

Cornwell Tara,Woodward Jane,Ochs Wendy,Gordon Keith E.

Abstract

Gait rehabilitation following incomplete spinal cord injury (iSCI) often aims to enhance speed and stability. Concurrently increasing both may be difficult though as certain stabilization strategies will be compromised at faster speeds. To evaluate the interaction between speed and lateral stability, we examined individuals with (n = 12) and without (n = 12) iSCI as they performed straight walking and lateral maneuvers at Preferred and Fast treadmill speeds. To better detect the effects of speed on stability, we challenged lateral stability with a movement amplification force field. The Amplification field, created by a cable-driven robot, applied lateral forces to the pelvis that were proportional to the real-time lateral center of mass (COM) velocity. While we expected individuals to maintain stability during straight walking at the Fast speed in normal conditions, we hypothesized that both groups would be less stable in the Amplification field at the Fast speed compared to the Preferred. However, we found no effects of speed or the interaction between speed and field on straight-walking stability [Lyapunov exponent or lateral margin of stability (MOS)]. Across all trials at the Fast speed compared to the Preferred, there was greater step width variability (p = 0.031) and a stronger correlation between lateral COM state at midstance and the subsequent lateral foot placement. These observations suggest that increased stepping variability at faster speeds may be beneficial for COM control. We hypothesized that during lateral maneuvers in the Amplification field, MOS on the Initiation and Termination steps would be smaller at the Fast speed than at the Preferred. We found no effect of speed on the Initiation step MOS within either field (p > 0.350) or group (p > 0.200). The Termination step MOS decreased at the Fast speed within the group without iSCI (p < 0.001), indicating a trade-off between lateral stability and forward walking speed. Unexpectedly, participants took more steps and time to complete maneuvers at the Fast treadmill speed in the Amplification field. This strategy prioritizing stability over speed was especially evident in the group with iSCI. Overall, individuals with iSCI were able to maintain lateral stability when walking fast in balance-challenging conditions but may have employed more cautious maneuver strategies.

Funder

U.S. Department of Veterans Affairs

Publisher

Frontiers Media SA

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3