Extremum information transfer over networks for remote estimation and distributed learning

Author:

Vasconcelos Marcos M.,Mitra Urbashi

Abstract

Most modern large-scale multi-agent systems operate by taking actions based on local data and cooperate by exchanging information over communication networks. Due to the abundance of sensors, each agent is capable of generating more data than what could be supported by communication channels in near real-time. Thus, not every piece of information can be transmitted perfectly over the network. Such communication constraints lead to a large number of challenging research problems, some of which have been solved, and many more that remain open. The focus of this paper is to present a comprehensive treatment of this new class of fundamental problems in information dissemination over networks, which is based on the notion of extremum information. The unifying theme herein is that the strategic communication, i.e., when the agents decide on what to transmit based on their observed data (or state), leads to the optimality of extremum (or outlier) information. In other words, when a random information source deviates from the average by a certain amount, that realization should be prioritized for transmission. This creates a natural ranking of the data points based on their magnitude such that if an agent has access to more than one piece of information, the ones that display the largest deviation from the average are transmitted and the rest is discarded. We show that the problem of finding the top-K largest measurements over a network can be cast and efficiently implemented as a distributed inference problem. Curiously, the same principle holds for the framework of distributed optimization, leading to a class of state-dependent protocols known as max-dissent. While still a heuristic, max-dissent can considerably accelerate the convergence to an optimal solution in distributed convex optimization. We provide open problems and present several directions for future work including questions related to cyber-security and robustness of such networks as well as new architectures for distributed learning and optimization.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3