Similarity preserving hashing for appliance identification based on V-I trajectory

Author:

Liu Xingqi,Liu Xuan,Zheng Angang,Chen Hao,Dou Jian

Abstract

Non-intrusive load monitoring (NILM) is a technique used to monitor energy consumption in buildings without requiring hardware installation on individual appliances. This approach offers a cost-effective and scalable solution to enhance energy efficiency and reduce energy usage. Recent advancements in NILM primarily employ deep-learning algorithms for appliance identification. However, the substantial number of parameters in deep learning models presents challenges in quickly and effectively identifying appliances. An effective technique for appliance identification is analyzing the appliances’ voltage-current (V-I) trajectory signature. This research introduces a novel hashing method that learns compact binary codes to achieve highly efficient appliance V-I trajectory identification. Specifically, this paper uses a profound structure to acquire V-I trajectory image features by acquiring multi-level non-linear transformations. Subsequently, we merge these intermediary traits with high-level visual data from the uppermost layer to carry out the V-I trajectory image retrieval process. These condensed codes are subjected to three distinct standards: minimal loss in quantization, uniformly distributed binary components, and autonomous bits that are not interdependent. As a result, the network easily encodes newly acquired query V-I images for appliance identification by propagating them through the network and quantizing the network’s outputs into binary code representations. Through extensive experiments conducted on the PLAID dataset, we demonstrate the promising performance of our approach compared to state-of-the-art methods.

Publisher

Frontiers Media SA

Reference57 articles.

1. Edge computed nilm: a phone-based implementation using mobilenet compressed by tensorflow lite;Ahmed,2020

2. Real-time non-intrusive load monitoring: a light-weight and scalable approach;Athanasiadis;Energy Build.,2021

3. Mixed-integer nonlinear programming for state-based non-intrusive load monitoring;Balletti;IEEE Trans. Smart Grid,2022

4. Deep learning and time series-to-image encoding for financial forecasting;Barra;IEEE/CAA J. Automatica Sinica,2020

5. Non-intrusive load monitoring by using active and reactive power in additive factorial hidden markov models;Bonfigli;Appl. Energy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3