Numerical modeling and validation of earthquake soil structure interaction: a 12-story building in Ventura, California

Author:

Yang Han,Wang Hexiang,Jeremić Boris

Abstract

Presented is a validation study for high fidelity numerical modeling of earthquake soil structure interaction (ESSI) for a building, hotel structure in Ventura, California. A detailed finite element (FE) model of the ESSI system, featuring the 12-story concrete structure, pile group foundation, and underlying soil, is developed using the Real-ESSI Simulator (Jeremić et al., The Real-ESSI Simulator System 1988–2022, 2022a). The domain reduction method (DRM) (Bielak et al., Bulletin of the Seismological Society of America, 2003, 93(2), 817–824; Yoshimura et al., Bulletin of the Seismological Society of America, 2003, 93(2), 825–841) is used to apply seismic loads, in this case the 1994 Northridge earthquake motions. Direct comparison between simulation results and California Strong Motion Instrumentation Program (CSMIP) recordings shows a high level of agreement in acceleration and displacement responses at all instrumented locations. Sensitivity study on a number of modeling choices and analysis parameters is conducted to investigate controlling factors for the ESSI response. For example, the soil-structure interaction effect and structural damping ratios are shown to have significant influence on system dynamic response. In addition, the soil inelasticity is shown to be highly influenced by the magnitude of seismic motion. Both effects are important for validation as they contribute to sensitivity of response to parametric variability.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference40 articles.

1. Reliability, uncertainty estimates, validation and verification;Babuska,2004

2. Verification and validation in computational engineering and science: basic concepts;Babuška;Comput. Methods Appl. Mech. Eng.,2004

3. Guidelines for performance-based seismic design of tall buildings;Baker,2017

4. Domain reduction method for three–dimensional earthquake modeling in localized regions. Part I: theory;Bielak;Bull. Seismol. Soc. Am.,2003

5. Structure-soil-structure interaction of adjacent buildings subjected to seismic loading;Bybordiani;Earthq. Eng. Struct. Dyn.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3