Building thermal resilience framework (BTRF): A novel framework to address the challenge of extreme thermal events, arising from climate change

Author:

Serdar Mohammad Zaher,Macauley Nadine,Al-Ghamdi Sami G.

Abstract

Over the past 2 decades, many parts of the world have experienced unprecedented record-breaking temperatures; these extremes fall on both ends of the temperature spectrum ranging from excessively hot to freezing low. Moreover, recently, the rate and the impacts of these extremes have increased, despite all the mitigation efforts, necessitating a resilience-based approach to address these challenges stemming from the accelerated global warming and the advent of climate change. Examples of such extremes include the 2003 and 2022 heatwaves in Europe, claiming approximately 4,000 and 12,000 lives, respectively as well as the 2021 heatwave in the Pacific Northwest region of North America and the deep freeze in Southeast Texas. In this paper, we reflect on previous studies, identifying both internal and external aspects that contribute to a building’s thermal performance. We then incorporate these factors into a proposed framework, covering the important phases of a building’s life cycle, to reflect its thermal resilience. During each phase, an associated Building Thermal Resilience Profile (BTRP), taken from accumulated data of previous phases, provides the needed assessment of the building, and is regularly adapted to changes in the building and its surroundings. BTRP will be a valuable tool for the resilience evaluation of different design options. Furthermore, during the operation phase, it will contribute to real-time monitoring and assessment, facilitating disaster management and response, at both the buildings and city scale, reducing the causalities of extreme events. Thus, the BTRF has the potential to expand into various fields such as healthcare, green and resilient buildings rating systems, and even to improve the municipal regulations. Nevertheless, the prime aim of this paper is to address the challenge of extreme thermal events, arising from climate change, and pave the way for the adoption of effective thermal resilience in building design and operation practices.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3