Intensity-Based Sentiment and Topic Analysis. The Case of the 2020 Aegean Earthquake

Author:

Contreras Diana,Wilkinson Sean,Aktas Yasemin Didem,Fallou Laure,Bossu Rémy,Landès Matthieu

Abstract

After an earthquake, it is necessary to understand its impact to provide relief and plan recovery. Social media (SM) and crowdsourcing platforms have recently become valuable tools for quickly collecting large amounts of first-hand data after a disaster. Earthquake-related studies propose using data mining and natural language processing (NLP) for damage detection and emergency response assessment. Using tex-data provided by the Euro-Mediterranean Seismological Centre (EMSC) collected through the LastQuake app for the Aegean Earthquake, we undertake a sentiment and topic analysis according to the intensities reported by their users in the Modified Mercalli Intensity (MMI) scale. There were collected 2,518 comments, reporting intensities from I to X being the most frequent intensity reported III. We use supervised classification according to a rule-set defined by authors and a two-tailed Pearson correlation to find statistical relationships between intensities reported in the MMI by LastQuake app users, polarities, and topics addressed in their comments. The most frequent word among comments was: “Felt.” The sentiment analysis (SA) indicates that the positive polarity prevails in the comments associated with the lowest intensities reported: (I-II), while the negative polarity in the comments is associated with higher intensities (III–VIII and X). The correlation analysis identifies a negative correlation between the increase in the reported MMI intensity and the comments with positive polarity. The most addressed topic in the comments from LastQuake app users was intensity, followed by seismic information, solidarity messages, emergency response, unrelated topics, building damages, tsunami effects, preparedness, and geotechnical effects. Intensities reported in the MMI are significantly and negatively correlated with the number of topics addressed in comments. Positive polarity decreases with the soar in the reported intensity in MMI demonstrated the validity of our first hypothesis, despite not finding a correlation with negative polarity. Instead, we could not prove that building damage, geotechnical effects, lifelines affected, and tsunami effects were topis addressed only in comments reporting the highest intensities in the MMI.

Funder

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference49 articles.

1. The Aegean Earthquake and Tsunami of 30 October 2020 AktasY. O'kaneA. KöşkerA. ÖzdenA. T. VatteriA. P. DurmazB. 2021

2. The Mw6.4 Albania Earthquake on the 26th November 2019 AndonovA. AndreevS. FreddiF. GrecoF. GentileR. NovelliV. 2020

3. 'Drop, Cover and Hold on' or 'triangle of Life' Attributes of Information Sources Influencing Earthquake Protective Actions;Arlikatti;Int. J. SAFE,2019

4. EARS (Earthquake Alert and Report System);Avvenuti,2014

5. Rapid Public Information and Situational Awareness after the November 26, 2019, Albania Earthquake: Lessons Learned from the LastQuake System;Bossu;Front. Earth Sci.,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3