The rise of digitalization in constructions: State-of-the-art in the use of sensing technology for advanced building-assistance systems

Author:

Suo Jiaqi,Waje Sharvari,Gunturu Venkata K. T.,Patlolla Akshitha,Martani Claudio,Dib Hazar Nicholas

Abstract

The construction sector is traditionally affected by on-site errors that significantly impact both budget and schedule. To minimize these errors, researchers have long hypothesized the development of AR-enriched 4D models that can guide workers on components deployment, assembly procedures, and work progress. Such systems have recently been referred to as Advanced Building-Assistance Systems (ABAS). However, despite the clear need to reduce the on-site errors, an ABAS has not been implemented and tested yet. This is partially due to a limited comprehension of the current wealth of available sensing technologies in the construction industry. To bridge the current knowledge gap, this paper evaluates the capabilities of current use of sensing technologies for objects identification, location, and orientation. This study employs and illustrates a systematic methodology to select according to eight criteria and analyzed in three level the literature on the field to ensure comprehensive coverage of the topic. The findings highlight both the capabilities and constraints of current sensing technologies, while also providing insight into potential future opportunities for integrating advanced tracking and identification systems in the built environment.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3