Analytical method of incorporating failure probability to predict the fatigue life of ultra-high-performance concrete (UHPC)

Author:

Luo Chuanglian,Yang Pengfei,Niu Yanfei,Zhang Yafang,Cheng Congmi

Abstract

This study predicted the fatigue life (N) of UHPC incorporated with different volume fractions (Vf = 0.0%, 0.5%, 1.0%, 1.5% and 2.0%) of steel fiber under flexural cyclic loading at various stress levels (S). The Weibull distribution, a two-parameter model, was utilized to estimate the distribution of fatigue life in UHPC. Subsequently, three methods were employed to calculate the parameters: the graphical method, the method of moments, and the method of maximum likelihood. The averaged values of these parameters were then obtained to enhance the accuracy of the estimation. The results are presented in the form of S-N diagrams, which depict the quantitative relationship between stress (S) and fatigue life (N). This relationship was determined using the Wohler equation, the modified Wohler equation, and the power equation. By employing these equations, the flexural fatigue strength of UHPC can be accurately predicted. Subsequently, the fatigue failure probability (Pf) was incorporated to enhance the reliability of the S-N quantitative relation. The fatigue testing results were presented in the form of S-N-Pf curves, which comprehensively reflect the relationship between stress, fatigue life, and failure probability. Furthermore, the mathematical relation of the S-N-Pf curves was derived to predict the fatigue life of UHPC with a given failure probability, providing a more comprehensive and accurate assessment of its fatigue behavior.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Frontiers Media SA

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3