Seismic responses of isolated bridges subjected to near-fault ground motions: simple pulses vs. whole records

Author:

Hui Ying-Xin,Wang Jie,Lv Jia-Le,Xu Ting-Ting

Abstract

Velocity pulse with strong energy input is the significant feature of near-fault ground motions. Bridges close to or passing across seismic faults may suffer from higher failure risk, which is inseparable from the influence of velocity pulse. This study aims to evaluate the nonlinear response characteristics of bridge structures under various near-fault ground motion conditions. A typical isolated continuous girder bridge is adopted, and two corresponding finite element models, i.e., considering and ignoring the heating effect of lead core bearings (LRBs), are established based on the OpenSees platform. Then, a total of 40 near-fault ground motion records are selected, and the pulses are extracted. Both the energy-based and deformation-based seismic responses are captured and compared to reveal the differences for the isolated bridge subjected to the original waves and the extracted pulses. The results highlight that the accuracy of the seismic evaluation based on the extracted pulses strongly depends on the precondition that the pulse period is close to the fundamental period of the isolated bridge. Hence, inputting the extracted pulses for predicting the in-elastic seismic response of isolated bridges locating at near-fault region is not an adequate replacement for those original waves of near-fault ground motions. In addition, the heating effect of LRBs will be magnified for the seismic response of isolated bridges subjected to the extracted pulses, and it will mainly affect the seismic responses of bearings and piers, i.e., the former increases and the latter decreases.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3