Robustness, redundancy, inclusivity, and integration of built environment systems: resilience quantification from stakeholders’ perspectives

Author:

Al-Humaiqani Mohammed M.,Al-Ghamdi Sami G.

Abstract

The built environment faces a growing number of challenges due to changing climates. A resilient built environment system (BES) can withstand disruptions and shocks, and resilient design allows communities to bounce back quickly. Considering present and future needs, BESs can be oriented to adapt to new uses or modified to handle changing climates. This study examines the resilience qualities (RQs) of built environment systems (BESs) in responding to and recovering from climate change disruptions effectively. A survey was designed to capture the views of various stakeholders about the different indicators to assess the four RQs: robustness (Rb), redundancy (Rd), inclusivity (Ic), and integration (It). Regulatory and engineering stakeholders participated in the survey, and the results were analyzed using statistical methods. Stakeholders generally agree on the need to enhance transformative capacity for addressing uncertainties and climate challenges. While stakeholders trust the role of BESs’ robustness against climate impacts, some suggest improving standards for better resilience. There is consensus on the importance of regulatory measures mandating emergency resources in BESs. The study highlights the need to enhance adaptive capacities and tools within BESs. Incorporating reconfigurability and spare capacity in BESs is crucial to prevent disruptions. Participants tend to think promoting good practices at the community level is essential to address climate impacts effectively. The analysis highlights the importance of inclusive community consultation and involvement in fostering a shared responsibility for enhancing urban ecosystems against climate change impacts. This involves aligning processes across various city systems to support cohesive decision-making and strategic investments. The study suggests developing objective engineering techniques to establish a standardized approach for evaluating the RQs of BESs.

Publisher

Frontiers Media SA

Reference97 articles.

1. Deterioration rates of typical bridge elements in New York;Agrawal;J. Bridg. Eng.,2010

2. Matthaios santamouris: minimising energy consumption, energy poverty and global and local climate change in the built environment: innovating to zero: casualties and impacts in a zero concept world;Alec Tzannes;J. Wind Eng. Ind. Aerodyn.,2019

3. Unveiling urban resilience: exploring the qualities and interconnections of urban systems;Al Humaiqani

4. Quantifying urban resilience: methods and approaches for comprehensive assessment;Al Humaiqani

5. Enhancing built environment resilience: exploring themes and dimensions;Al Humaiqani

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3