Future buildings as carbon sinks: Comparative analysis of timber-based building typologies regarding their carbon emissions and storage

Author:

Dzhurko Daria,Haacke Ben,Haberbosch Asta,Köhne Linde,König Nora,Lode Frida,Marx Antonia,Mühlnickel Luka,Neunzig Nina,Niemann Annika,Polewka Henrieke,Schmidtke Lea,Von der Groeben Pia Luz Marie,Wagemann Karl,Thoma Farah,Bothe Clemens,Churkina Galina

Abstract

The building and construction sector is responsible for a large share of carbon emissions resulting in the need to reduce them to mitigate climate change. Timber construction methods promise to lower emissions combined with biogenic carbon storage in the built environment. While there are several studies comparing the emissions of mineral-based and timber-based buildings, a consistent comparison of different timber-based building assemblies is still missing. This study compares carbon emissions from material production and carbon storage capabilities of four timber-based and two brick and reinforced concrete building assemblies. These assemblies were designed for a residential multi-storey building in Berlin, Germany. To compare and rank the carbon impacts of these assemblies we introduce a carbon storage-to-emission ratio. The calculations were performed using a Carbon Cycle Assessment Model implementation in Python. The results indicate an average reduction in carbon emissions of timber-based building assemblies by 32.6% to “Brick” and 40.4% to “Reinforced Concrete”, respectively. Across the timber-based building assemblies, the carbon emissions range between 85 t and 115 t, leading to an average of 105 t per building. Pronounced differences were observed in carbon storage, with the “Dowel Laminated Timber” building assembly storing more than three times the amount of carbon compared to “Light Weight Timber” assembly. To further reduce emissions from buildings and the construction sector and potentially enhance urban carbon storage, “Glue Laminated Timber” and “Dowel Laminated Timber” building assemblies were identified as the most promising.

Publisher

Frontiers Media SA

Reference41 articles.

1. Cities as carbon sinks—classification of wooden buildings;Amiri;Environ. Res. Lett.,2020

2. Embodied GHG emissions of wooden buildings—challenges of biogenic carbon accounting in current LCA methods;Andersen;Front. Built Environ.,2021

3. Carbon sequestration and storage in the built environment;Arehart;Sustain. Prod. Consum.,2021

4. Grundsätze zur Aufnahme von Ökobilanzdaten in die Online-Datenbank ÖKOBAUDAT. Bundesamt für Bauwesen und Raumordnung2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3