Methodology Maps for Model-Based Sensor-Data Interpretation to Support Civil-Infrastructure Management

Author:

Pai Sai G. S.,Smith Ian F. C.

Abstract

With increasing urbanization and depleting reserves of raw materials for construction, sustainable management of existing infrastructure will be an important challenge in this century. Structural sensing has the potential to increase knowledge of infrastructure behavior and improve engineering decision making for asset management. Model-based methodologies such as residual minimization (RM), Bayesian model updating (BMU) and error-domain model falsification (EDMF) have been proposed to interpret monitoring data and support asset management. Application of these methodologies requires approximations and assumptions related to model class, model complexity and uncertainty estimations, which ultimately affect the accuracy of data interpretation and subsequent decision making. This paper introduces methodology maps in order to provide guidance for appropriate use of these methodologies. The development of these maps is supported by in-house evaluations of nineteen full-scale cases since 2016 and a two-decade assessment of applications of model-based methodologies. Nineteen full-scale studies include structural identification, fatigue-life assessment, post-seismic risk assessment and geotechnical-excavation risk quantification. In some cases, much, previously unknown, reserve capacity has been quantified. RM and BMU may be useful for model-based data interpretation when uncertainty assumptions and computational constraints are satisfied. EDMF is a special implementation of BMU. It is more compatible with usual uncertainty characteristics, the nature of typically available engineering knowledge and infrastructure evaluation concepts than other methodologies. EDMF is most applicable to contexts of high magnitudes of uncertainties, including significant levels of model bias and other sources of systematic uncertainty. EDMF also provides additional practical advantages due to its ease of use and flexibility when information changes. In this paper, such observations have been leveraged to develop methodology maps. These maps guide users when selecting appropriate methodologies to interpret monitoring information through reference to uncertainty conditions and computational constraints. This improves asset-management decision making. These maps are thus expected to lead to lower maintenance costs and more sustainable infrastructure compared with current practice.

Funder

National Research Foundation

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3