Horizontal-to-tilt irradiance conversion for high-latitude regions: a review and meta-analysis

Author:

Manni Mattia,Thorning Jacowb Krum,Jouttijärvi Sami,Miettunen Kati,Di Sabatino Marisa,Lobaccaro Gabriele

Abstract

This review focuses on the solar irradiance model chain for horizontal-to-tilted irradiance conversion at high latitudes. The main goals of the work are 1) to assess the extent to which the literature accounts for decomposition and transposition models specifically developed for high-latitude application; 2) to evaluate existing validation studies for these particular conditions; 3) to identify research gaps in the optimal solar irradiance model chain for high-latitude application (i.e., latitude ≥60°). In total, 112 publications are reviewed according to their publication year, country, climate, method, and keywords: 78 publications deal with decomposition models and 34 deal with transposition models. Only a few models (6) have been parameterized using data from Nordic countries. Here, we compare 57 decomposition models in terms of their performance in Nordic climate zones and analyze the geographical distribution of the data used to parametrize these models. By comparing the Normalized Root Mean Square Deviation coefficients for direct normal irradiation, the decomposition models Skartveit1 and Mondol1 are most effective on one-hour scale and Yang4 on one-minute scale. Recent studies on the empirical transposition models estimating the global tilted irradiation on vertical surfaces show the best performance for Perez4 and Muneer models. In addition, innovative methods such as artificial neural networks have been identified to further enhance the model chain. This review reveals that a validated model chain for estimating global tilted irradiation at high latitudes is missing from the literature. Moreover, there is a need for a universal validation protocol to ease the comparison of different studies.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3