Agent-based modelling of high-speed railway interdependent critical infrastructures facing physical and cyber threats

Author:

Kongsap Pattrapon,Kaewunruen Sakdirat

Abstract

Globally, high-speed rail systems serve nearly 2 billion passenger-km daily. By virtue, they are a critical infrastructure like telecommunication and power networks. Accordingly, they become a catalyst for societal and economic growth stemming from the mobility business. The highspeed rail operations are very complex and interdependent, owing to the escalated demands for long-distance interconnected transportation. In recent years, there have been unreasonable delays for passengers as a new norm due to unfortunate train cancellations and relaxation of mobility performance requirements. Therefore, accurate measurements, monitoring and prediction of disruptive impacts and service performance metrices are indispensable. Within the scope of high-speed rail services, this paper examines how agent-based and multi-agent-based models are utilized to address such the challenges. Our findings reveal that the current use of agents or multi-agent models has some limitations for practical applications. Previous studies showed that mathematical methods to assess the resilience of critical infrastructures, railway scheduling, and vehicle dispatching can yield more satisfactory outcomes, although the approaches can be relatively time-consuming. In contrast, agent-based and multi-agent-based models can shorten processing time and uncover disruptive events more promptly. The paper thus showcases several emerging concepts, including i) the utilization of big data for crisis management, ii) interconnectivity analysis of high-speed rail infrastructures, and iii) enhancement of transport resilience. In addition, our findings identify the most influential agents and their possible applications to enhance systems resilience of highspeed rail networks when dealing with unforeseen physical and cyber threats.

Funder

Japan Society for the Promotion of Science

European Commission

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference100 articles.

1. A multi-agent based simulation model for rail-rail transshipment: an engineering approach for gantry crane scheduling;Abourraja;IEEE Access,2017

2. Unsupervised machine learning for managing safety accidents in railway stations;Alawad;IEEE Access,2023

3. Agent-based modeling of service maintenance and repair of rolling stock;Alexandrov;IOP Conf. Ser. Earth Environ. Sci.,2019

4. Agent-based digital twins (ABM-Dt) in synchromodal transport and logistics: the fusion of virtual and pysical spaces;Ambra,2020

5. Validation of an agent based model using a participatory simulation gaming approach: the case of city logistics;Anand;Transp. Res. Part C Emerg. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3