Applications of Machine Learning to Wind Engineering

Author:

Wu Teng,Snaiki Reda

Abstract

Advances of the analytical, numerical, experimental and field-measurement approaches in wind engineering offers unprecedented volume of data that, together with rapidly evolving learning algorithms and high-performance computational hardware, provide an opportunity for the community to embrace and harness full potential of machine learning (ML). This contribution examines the state of research and practice of ML for its applications to wind engineering. In addition to ML applications to wind climate, terrain/topography, aerodynamics/aeroelasticity and structural dynamics (following traditional Alan G. Davenport Wind Loading Chain), the review also extends to cover wind damage assessment and wind-related hazard mitigation and response (considering emerging performance-based and resilience-based wind design methodologies). This state-of-the-art review suggests to what extend ML has been utilized in each of these topic areas within wind engineering and provides a comprehensive summary to improve understanding how learning algorithms work and when these schemes succeed or fail. Moreover, critical challenges and prospects of ML applications in wind engineering are identified to facilitate future research efforts.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference308 articles.

1. Prediction of Aeroelastic Response of Bridge Decks Using Artificial Neural Networks;Abbas;Comput. Structures,2020

2. Application of an Artificial Neural Network Model for Boundary Layer Wind Tunnel Profile Development;Abdi

3. Performance of Reinforced Concrete Coupling Beams Subjected to Simulated Wind Loading;Abdullah;ACI Struct. J.,2020

4. Turbulence Characterization of Downbursts Using LES;Aboshosha;J. Wind Eng. Ind. Aerodynamics,2015

5. Designing a Blade-System to Generate Downburst Outflows at Boundary Layer Wind Tunnel;Aboutabikh;J. Wind Eng. Ind. Aerodynamics,2019

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3