The conceptual design of a stream island index for physical habitat complexity assessment in stream restoration projects

Author:

Tallar Robby Yussac

Abstract

Most literature on geomorphology, hydraulics, or stream ecology contained either no mention or a brief description of stream islands, the process, the development, or the ecological advantages provided. Due to a lack of information, research, and related data, there were no stream island indexes available to indicate the stream island status. Motivated by this fact, the objective of this study is to develop a conceptual design for a Stream Island Index (SII) as a template for physical habitat complexity assessment in stream restoration projects. Specific purposes included: 1) to examine stream island conceptual models; 2) to develop obvious and comprehensive explanations for stream island development by considering attributes from the geomorphic, hydraulic, and ecological perspectives. This study used the AHP method for screening and selecting attributes, transforming and developing sub-indices, assigning weights, and formulating an index. The conclusion is an SII that combines the measures of selected physical habitat quality indicators to produce a single dimensionless number, and a novel approach to communicate information on stream island quality status to the public and related policymakers. It seems essential that a serious attempt be developed to design a system that can identify the overall stream island condition. Once a generalized stream island system is set up as a controlling framework, supplementary indexes for specific purposes and locations can be added. Therefore, the SII is a promising new tool for stream restoration practitioners, and it has the potential to make a significant contribution to improving the success of stream restoration projects.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3