Minimising damage to houses by designing for high internal pressures

Author:

Parackal Korah,Boughton Geoff,Henderson David,Falck Debbie

Abstract

Internal pressurisation of buildings during a severe wind event, such as a tropical cyclone or thunderstorm, can often cause severe structural failures, as observed during damage investigations. Wind loading standards worldwide provide design data for internal pressure design. However, the implementation of these data often depends on the location of the building in relation to the levels of wind hazard in the relevant country. Recent observations during Tropical Cyclone (TC) Seroja in an intermediate wind region (wind region B) in Western Australia indicated the need for the design for full internal pressures of buildings in this wind region. This paper presents an overview of the damage investigation conducted after TC Seroja that highlights significant damage to buildings due to the lack of design for internal pressures. Additionally, a case study of a house modelled using the vulnerability analysis software VAWS is presented showing the improvements in the performance of buildings designed for internal pressures. TheVAWS models showed that both the design for full internal pressure and the use of debris rated shutters were both effective at reducing the level of serious structural damage and making houses more resilient. The robustness and resilience of buildings increase significantly if they are designed for high internal pressure because the failure of a window or door (a local failure) will not lead to a major structural failure.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3